Reformate Desulfurization for Logistic SOFC Power Systems

Hongyun Yang¹, Troy Barron¹ and Bruce Tatarchuk²

1. IntraMicron Inc., 368 Industry Drive, Auburn, AL, 36832
2. Dept. of Chem. Eng., Auburn University, AL, 36849

June 16, 2010

the 44th Power Sources Conference
Las Vegas, NV
IntraMicron Inc is a small business company located at Auburn, AL. Its R&D covers: (1) Filtration; (2) Desulfurization; (3) Fischer Tropsch Synthesis; (4) CO oxidation.
Desulfurization Sorbents/Adsorbents

Low Temperature Gas Phase
Desulfurization Sorbent: Cu-ZnO/\text{SiO}_2, (Patent Applied for)

Liquid Phase Desulfurization Adsorbents:
Ag_2O/TiO_2 for JP-5

Current capacity: ~6 mg S/g adsorbent

After Desulfurization
Ultralow Sulfur Diesel Sample

- Proprietary and business Sensitive -
Outline

• Sulfur Issue
• Reactor Design and Bed Configuration
• Desulfurization & Regeneration Performance
• Desulfurizer Construction
• Conclusion
• Acknowledgements
Sulfur Issue

• Typical Fuel Cells Have Low Sulfur Threshold:
 – 0.1 ppmv most for PEM Fuel Cells
 – 2~3 ppmv for typical Solid Oxide Fuel Cells

• Sulfur Content in Logistic Fuels (ca. JP-5, JP-8)
 – i.e. 500~3000ppmw, equivalent to 50~300 ppmv after converted to reformates in reformers.

• Sulfur Removal Techniques
 – Pre Reformer Desulfurization
 – Post Reformer Desulfurization

• Post Reformer Desulfurization Using Reactive Sorbents
 – ZnO, CuO, Fe$_2$O$_3$ etc.
 – High sulfur capacity (i.e. 392 mg S/g ZnO), compared to adsorbents for liquid phase desulfurization.
Objectives

• To build a desulfurizer able to
 – Reduce total sulfur concentration to less than 3 ppmv
 – Provide a continuous run of 200 hours
 – Have a good low temperature performance for cold
 startup and transient operations
 – Small bed size: ~1 foot long
 – Low pressure drop ca. 1-2 psi
Cyclic Arrangement and Transition Operation

Start with heating

Time balance

Desulfurization

Regeneration

Purging

\[
\text{Time balance} = 5\text{ hours} = 4\text{ hours} + 1\text{ hour Transition}
\]
Preferred desulfurization temperature: 400 C
Preferred regeneration temperature: 600 C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size</td>
<td>0.8~1.4 mm</td>
<td>Regn <5 hour</td>
</tr>
<tr>
<td>Reactor diameter</td>
<td>6”</td>
<td>60 cm/s</td>
</tr>
<tr>
<td>Bed length</td>
<td>12”</td>
<td>L/D=2</td>
</tr>
<tr>
<td>Pipe /valve size</td>
<td>2”</td>
<td>6 m/s</td>
</tr>
</tbody>
</table>

Note:

The system works at 400 C during desulfurization and 600 C during regeneration. Therefore the valves are required to work at high temperature in the presence of oxygen during regeneration.

Sulfur input: 300 ppmv
Design Challenges

Reformates:
Flow rate: 17 kg/hr.
Temperature from reformer: 850°C
Reformate Composition:

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>24.9%</td>
</tr>
<tr>
<td>CO₂</td>
<td>10.2%</td>
</tr>
<tr>
<td>WATER</td>
<td>6.9%</td>
</tr>
<tr>
<td>H₂</td>
<td>25.0%</td>
</tr>
<tr>
<td>N₂</td>
<td>33.0%</td>
</tr>
<tr>
<td>H₂S</td>
<td>300 ppmv</td>
</tr>
</tbody>
</table>

High CO and CO₂ concentration, COS formation.

\[
\text{CO}_2 + \text{H}_2\text{S} = \text{COS} + \text{H}_2\text{O}
\]
\[
\text{CO} + \text{H}_2\text{S} = \text{COS} + \text{H}_2
\]

Breakthrough Concentration: 2~3 ppmv
Run time: 200 hours
Regenerable
Small Reactor
Good Low Temperature Performance for Cold
Pressure Drop: < 2 psi
Startup and Transient Operations.
Desulfurization Performance
COS Equilibrium Analyses

\[
\begin{align*}
\text{CO(g)} + \text{H}_2\text{S(g)} &= \text{COS(g)} + \text{H}_2(g) \quad \text{(slow homogeneous reaction)} \\
\text{CO}_2(g) + \text{H}_2\text{S(g)} &= \text{COS(g)} + \text{H}_2\text{O(g)} \quad \text{(fast heterogeneous reaction)}
\end{align*}
\]

(1) Experimental results suggest the COS formation via CO is slow, the outlet COS concentration is about 6 ppmv at test conditions in a blank tube.

(2) COS formation via CO\(_2\) requires catalysts such as ZnS.

(3) COS is difficult to be captured by ZnO sorbent. Hydrolysis is required.

Reformate composition: 25% CO, 25% H\(_2\), 10% CO\(_2\), 7% H\(_2\)O and 33% N\(_2\).

- Proprietary and Business Sensitive -
Effects of CO and CO₂

Need sorbents for COS removal or conversion

\[
\begin{align*}
CO + H_2S &= COS + H_2 & K = 0.0363 & C_e = 10.4 \text{ ppmv;} \\
CO_2 + H_2S &= COS + H_2O & K = 0.0029 & C_e = 1.2 \text{ ppmv}
\end{align*}
\]

Breakthrough curves of layered beds tested with 300 ppmv H₂S-25% H₂-25% CO-10% CO₂-7% H₂O-33% N₂ at a face velocity=100 cm/s at 400 C. Bed length: 22 cm
Bed Configuration
Layered Bed Design

- Low outlet sulfur concentration (as low as 0.3 ppmv)
- Less weight
- Short regeneration time
- Low temperature function
- Bed Configuration
 - Down flow direction
 - (in desulfurization)
 - Diameter: 2.14 cm
 - Particle size: 0.8~1.4 mm
 - Supported sorbent: ZnO/SiO₂ and supported Cu doped ZnO sorbent which has a better low temperature performance.
Layered- Bed Performance

Desulfurization was carried out at 400°C in the presence of reformates containing 300 ppmv H₂S-25% H₂- 25% CO-10% CO₂-7% H₂O-33% N₂ at a face velocity of 60 cm/s.

(1) Allow multiple stop and resume
(2) Run time can be extended if necessary.
Cyclic Test
(Layered Bed of ZnO-ZnO/SiO$_2$)

Desulfurization was carried out at 400 C in the presence of reformates containing 300 ppmv H$_2$S-25% H$_2$- 25% CO-10% CO$_2$-7%H$_2$O-33% N$_2$.

2 beds
30 cycles/bed
5 hrs/cycle
Total is 300 hours.
Reduced Regeneration Time

Sorbent can be regenerated in a shorter time;
Sorbent bed can be stop and resume multiple times during the run.
Sorbent bed can provide a longer service time.

Tested with challenge gas containing 300 ppmv, 30% CO, 32% H₂, 30% N₂ and 8% H₂O at a face velocity of 1.0 m/s at 400 C. The sorbent bed contains 56 g of 1.2 mm ZnO particles with a bed length of 10 cm, and ZnO/SiO₂ of 12 cm. Spent sorbent was regenerated in air-steam mixture containing ~14% O₂ for 4 hours.
Desulfurization was carried out at 150 C in the presence of reformates containing 300 ppmv H₂S-25% H₂- 25% CO-10% CO₂-7%H₂O-33% N₂.
Off-Site Regenerable Desulfurizer
(Sulfur Cartridge)

- Single reactor provides a run time of 200 hours.

Desulfurization was carried out at 400 C in the presence of reformates containing 300ppmv H2S-25% H2- 25% CO-10% CO2-7%H2O-33% N2 at a face velocity of 60 cm/s.
Conclusion

• The layered bed made of commercial ZnO and supported ZnO based sorbent demonstrated a wide operational temperature window (150~400 °C).

• The layered bed are highly regenerable. It can be regenerated for 30 cycle without significant changes in desulfurization performance.

• The designed desulfurizer can provide a continuous run with regeneration or 200 hours run as a sulfur cartridge.
Acknowledgements

Award #: W56HZV-07-C-0577
Thank you for your attention

Questions?